DocHssembler

An application to collect
and structure text documents
on the Macintosh
© 1996 Amedeo Farello - All rights reserved
Version 1.0 - March 1996

“XTND Library” v. 1.3.6 © Claris Corporation

Table of contents

Table Of CONTENTS. ... 2
What iS DOCASSEMDIEI?....ccieieiie ettt 4
SYSTEM FEQUITEMENTS.ciiiiiiie et e st e e st e e s e e srae e sraaeenbeeanne e 5
Shareware INFOrMAatioN. ..o 6
Limitations to unregistered COPIES.cviiiiiiiiiie e 6
AVaAIIaDIE TICENSES. ..ot 6
HOW 10 FEOISTEY ...t 7
About the registration COE...........coiiiiiiiiiieie e 8
I want your feedback!..............coviiiiie e 8
DIStribULION reSTIICTIONS.coiiiiiiie e 8
SOTEWATE [ICENSE...... ettt e et e e e teenneeanee e e e nraeaneas 9
ADOUL The AUTNOT ... s 10
ACKNOWIEAGEMENTS.......eiiiiiiiee e 10
USING DOCASSEMDIET ...ttt e 11
Anatomy of a DocAssemMbler WiNAOW............ccccooviiiiiie e 13
The "LeVel" fleld........oo e 13
The "Name” FIeld........cooii e 13
The "Type" and "Appl" fields.........ccovveeiii e 13
THE "F" FIEIA. . 14
THE T FIEl e 14
THE "A" FIEIA. ..o 14
When is the list updated?..........ocooiiiii e 15
How to collect the SOUICE fIlES........covviiie i 16
ACCEPL Z FEJECT CIITEIIA. ...iivveeii et 16
The "Open dialog” Method............ccoooiiiiiiiii e 16
The "Drag and Drop"” method...........ccocoiiiiiiiiiii e, 17
The "Apple Script” Method.........cccooooii i 18
How to structure the dOCUMENT..........cooiiiiiiie et 19
Hierarchical level of the source files..........cccccoovviiiiii i 19
How to change the source files order..........cccccoovveviie i, 19
Headers and fOOTEIS.........ooiiiie s 20
HOW t0 access the SOUICE TIlES........coovi i 21
EQItiNG FIlES. ..o s 21
TracKing FIlES. ..o 21
SEtEING PrETEIENCES.i it 22
= Lo | SOOI 22
STTUCTULE. ...ttt ettt e e be et e e e b e e nnnas 22
Left header, Right (single) header, Left footer, Right (single) footer....23
Known bugs and probIemS............ooiiiii e 25
XTND limitations (nice pun, hUN?).......coooiiiiii e, 25
FOOTNOTES. ... e e e e eneeeas 25
F AN o o] (=1 o] o | o | SO ST 26
COMMEANAS FETEIEINCE. ... ettt sre e e 27
The aPPIE MENU....coiiiii e 27

ADOULt DOCASSEMDBIET ... 27

N B Y e e 27
PN 27

[0 [1] 28

T- AV LTS 28

AV A S ———————— 28
Y] o PR 28
Produce DOCUMEBNTL..........ooiiiiiiiiiee et 28

PagE SELUP. ...t 28

T) T 28

(@ U S OSSPSR 28

B I LT o T 1= L T 29
(] o o Lo TR 29

{11) SRR 29

(O] o) PP PR UPP TP PRPPR 29

P S . i 29

O [TV 29

Y=Y =11 A L 29

THe DOCUMENT MENU....eiiiiiiiiiiiiiie et e e e re e e e e e e eabaaa e e e e e e eans 30
YN o (o 1 | LT 30
INCIEASE LEBVEL....uveeiiiieeeeeeeeee e 30
REAUCE LEVEL...ooiiiie e 30
REDUII LISt......coiiiiiiie e 30

[=) (ST =] (01T 31

THE WINAOW MEBNU....uiiiiiiiiiiiiiiiiee ettt e e btaee e e s s e ebaaae e e e e s aaans 31
o Yo] 0 YA/ 1 g o o 1Y, 20 31
APPIE EVENTS FEIEIENCE. ... 32
The StaNdard SUILE...........oooiiiiiiie e 32
L0 [0 11T PR 32

(D21 7= BT 7 YR 32

7= 33

1Y = TR 33
PN 34

o T) T 34

T- AV LTS 35

ST 35

L A LCTR O T [0 [U (=R 36
RSY=] =T o PR 36

The Miscellaneous Standards SUIE............eevviieiiiiiiiiiiiiiiieeeeeeee e 36
Y] o PR 36

The DOCASSEMDBIET SUITE........uviiiiiiiiiiiiiiiiiiieeeeeeeeeee s 37
AN o [FO TR 37

[0T [oY 37

Y= Bl ad (Y (1 (] [T 38

SEE OULPUL. ... 39
Constants and AppleScript enumeration terminology..............cccvvve.... 41
VEISION NISTONYeiiiiiie ettt ae e ree s 43

1.0 (MArCH 1996).....c.uiiuiiiiiieiiiee ettt 43

What is DocAssembler?

DocAssembler is an application that collects text documents, which are supposed
to be "sections" of a global document and produces a single target document that
comprises them all. Between these two phases, the user can arrange the structure
of the sections, by changing both their order and their hierarchical level, relying
upon DocAssembler for automatic correct indexing.

You might find this application useful if you need to assemble a manual or other
forms of documentation, especially if you work in a collaborative environment
where different people is responsible for different parts. You could even put the
parts togheter automatically using DocAssembler's scripting features.

Or you may use it if you need to repeatedly produce text documents whose
content does not differ much. Such documents can be contracts or tenders, which
usually have standard parts that remain unchanged in every situation, while
other small portions change accordingly to the specific context.

Both the source documents and the output document can be specified in a
variety of formats, thanks to the Claris XTND technology support. DocAssembler
will read and write any text document for which an XTND translator is available.
This is the same technology used by Claris as well by a number of commercial
and shareware products.

If the Drag and Drop extension is available, DocAssembler lets you collect the
source files simply by dragging them from the Finder or change their order
dragging them around the document window.

DocAssembler supports all the standard Apple Event suites, and is both scriptable
and recordable. Besides, it defines a few custom events so that you can completely
remote control it using AppleScript. To learn more about this subject, see the
"AppleScript reference” chapter and the sample scripts that come with the
package.

System requirements

DocAssembler requires a Macintosh with:

= MC68000 processor or better
« 4 Mb RAM

e Color QuickDraw

= Mac OS 7.1 or later

= Claris XTND System

= Drag and Drop extension (optional, but strongly recommended)
= AppleScript (optional)

The minimum required amount of memory is 700 Kb and should be adequate for
simple and medium tasks using text only documents. Complex documents
containing pictures will require more generosity.

Shareware information

This software is © 1996 Amedeo Farello, all rights reserved.

Amedeo Farello

Loc. Vereytaz, 7

11018 Villeneuve (AO)
ITALY

e-mail: <farello@mbox.vol.it> or <farello@kagi.com>

This software is distributed as SHAREWARE. This means that after a 15 days trial
period, if you decide to continue using it, you are required to register your copy by
sending the requested fee to the author.

Of course, if you don't do that and you still use the software, it is unlikely that
you will ever face a trial. What is likely instead, is that | will stop its
development. So, if you find it useful, it could be a nice idea to register.

Remember that shareware is only an alternative distribution method. It simply
lets you try the product before you buy. Please, honor this concept and register

your copy.

Limitations to unregistered copies

Each time you launch an unregistered copy of DocAssembler, a startup screen is
shown recalling the principles of shareware and you can’t continue for at least 10
seconds. Besides, unregistered copies won’t accept more than 5 source files in
their documents. These limitations won’t prevent you from evaluating this
software.

If you register your copy, you will receive a code that fully enables it and removes
that annoying startup screen (and your sense of guilt). Registration gives you the
legal right to use this application and its possible next versions.

Available licenses

When you register, you can ask for 3 different types of license: “Single User
Licenses”, “Site Licenses” or a “World-Wide License”.

A “Single User License” allows the use of the registered copy by any number of
people, as long as there is no possibility of it being used simultaneously on more
than one machine.

A “Site License” covers all locations for your organization within a 160 kilometer
radius of your site (100 miles). One big advantage of a “Site License” is that you
do not need to keep track of how many people at your site are using the software.

A “World-Wide License” covers all locations for your organization on the planet
earth.

How to register

Paying for my software is fairly simple. Open the Register program that
accompanies my software. Enter your name, your e-mail or postal address, and
the type and number of licenses you desire for each program you wish to
purchase. Save or Copy or Print the data from the Register program and send the
data and payment to Kagi Shareware. Kagi Shareware handles my payment
processing.

If paying with Credit Card or First Virtual, you can e-mail or fax the data to Kagi
Shareware. Their e-mail address is <shareware@kagi.com> and their fax number
is +1 510 652-6589. You can either Copy the data from Register and paste into the
body of an e-mail message or you can Save the data to a file and you can attach
that file to an e-mail message. There is no need to compress the data file, it's
already pretty small. If you have a fax modem, just Print the data to the Kagi fax
number.

Payments sent via e-mail are processed within 3 to 4 days. You will receive an e-
mail acknowledgement when it is processed. Payments sent via fax take up to 10
days and if you provide a correct internet e-mail address you will receive an e-
mail acknowledgement.

If you are paying with Cash or USD Check you should print the data using the
Register application and send it to the address shown on the form, which is:

Kagi Shareware

1442-A Walnut Street #392-AF
Berkeley, California 94709-1405
USA

You can pay with a wide variety of cash from different countries but at present if
you pay via check, it must be a check drawn in US Dollars. Kagi Shareware
cannot accept checks in other currencies, the conversion rate for non-USD checks
is around USD 15 per check and that is just not practical.

If you have a purchasing department, you can enter all the data into the Register
program and then select Invoice as your payment method. Print three copies of
the form and send it to your accounts payable people. You might want to
highlight the line that mentions that they must include a copy of the form with
their payment.

Kagi Shareware can not invoice your company, you need to act on my behalf and
generate the invoice and handle all the paperwork on your end.

Please do not fax or e-mail payment forms that indicate Cash, Check or Invoice as
the payment method. As far as we know, there is still no technology to transfer
physical objects via fax or e-mail and without the payment, the form cannot be
processed.

Payments sent via postal mail take time to reach Kagi Shareware and then up to
10 days for processing. Again, if you include a correct e-mail address, you will
hear from Kagi Shareware when the form is processed.

About the registration code

If you entered an e-mail address in the registration form, | will use it to send you
the code as soon as | am informed of your payment. If you do not have e-mail, |
will have to send you a letter: please understand that this will take more time.

| want your feedback!

| would like to know what you think about my work, so, even if you are not
going to register, let me know your impressions, suggestments and bugs
discoverings.

Distribution restrictions

This software can be freely distributed as long as it is not modified, the original
package is included in its entirety and there’s no charge for it. It may not be
included in any commercial package without my written consent.

All online services and bulletin boards may make it available to their users at no
charge other than the normal connection fees.

All non-profit user groups may distribute it at no charge.

All magazines may publish it on floppy disk without asking me first, as long as |
get a copy of the issue containing my software.

All CD-ROM shareware collections and CD-ROM magazines may include it
without my prior consent, as long as | get a copy of the CD-ROM.

Software license

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THIS SOFTWARE.
BY USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE
TERMS OF THIS LICENSE.

The software accompanying this document and the related documentation are
licensed to you by Amedeo Farello, who retains all rights upon them. The
software contains copyrighted material and other proprietary material. In order
to protect them, and except as permitted by applicable legislation, you may not
decompile, reverse-engineer, disassemble or otherwise reduce the software to a
human-perceivable form.

You expressly acknowledge and agree that use of this software is at your sole risk.
This software and the related documentation are provided “AS IS” and without
warranty of any kind, express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose.

Amedeo Farello does not warrant, guarantee or make any representations
regarding the use or the results of the use of the software in terms of its
correctness, accuracy, reliability or otherwise. The entire risk about the results
and performance of this software is assumed by you.

Under no circumstances, including negligence, shall Amedeo Farello be liable for
any consequential, incidental or special damages that result from the use or
inability to use the software or related documentation, even if advised of the
possibility of such damages.

About the author

Although I have a degree in Architecture, many years ago | discovered that my
real passion was to tinker with computers, so | work full time as a software
developer now. | started programming on an Apple Il in 1982, then switched to
MS-DOS in 1985 and finally to Macintosh in 1990.

| currently use the C++ and C languages for all my development projects, but |
have some little experience with Pascal and Fortran as well.

| am very interested in Computer Graphics, information storage and rendering
methods, human-computer interaction problems and everything related to the
software development process in the design and communication fields. Of
course, all is Internet related also interests me.

In the past | have written software dealing with:

= geometric modeling (2D-3D curves and surfaces, boolean
operations between polygons)

= user interface ("intelligent” support to technical drafting)

= rendering (using flat shade, Gouraud, Phong, ray-tracing and
radiosity techniques)

= software localization (resources-to-glossary-to-resources)

= CAD systems integration (parametric generation of models)

= programming utilities (source code collection and formatting)

= structural engineering (linear and non-linear analysis of plane
frames and sections, linear analysis of 3D truss structures)

Note: | am currently considering job offers as a Macintosh programmer.

Acknowledgements

I wish to thank Alessandro Levi Montalcini for his intelligence and generosity.

Using DocAssembler

Please be aware that this application cannot function unless the Claris XTND
System is installed on your machine. The XTND software is commonly
distributed along with many, if not all, Claris software products and many others.
Given the XTND System is available and installed, you don’t need to do any
particular operation in order to use this program, | just suggest you to copy it
onto your hard disk.

When you start DocAssembler, a new empty document is created. A document
consists in a list of file references that you have to fill. You can build the list in
various ways, the easiest is to drag and drop file icons directly from the Finder or
file references from another DocAssembler document.

New files are always appended at the end of the list, you can change their order
lately using drag and drop. If you try to add a file that’s already in the list, you are
warned by the program and the operation is canceled. Each file reference is
shown with its type and creator, and three fields in its record show if the file is
really available (since you can add a file and then delete it), and if a proper XTND
translator and the creator application are available. If the application with which
you created the file is available, double clicking on the file record will ask it to
edit the file.

You can assign each file a “hierarchical” level between the four available. By
default, new files receive the topmost one. You can change the level using the
commands from the “Document” menu.

When the list is completed, you choose the “Produce Document...” command
from the “File” menu, which also has a button equivalent in the toolbar, the
target document production process begins.

First, all the source documents archived in the current DocAssembler document
are read and their data copied to a temporary file created in the same folder of the
application. This phase is shown by a progress indicator along with the name and
the format of each file being read.

The input progress indicator

DocAssembler 1.0

Reading "Sample file ¥4"
(Microsoft Word 4-5)

——— |

Then, a dialog will be presented to let you choose the name and the format of the
output document. The popup menu at the bottom of the dialog shows the list of
the available translators.

The dialog for choosing the output document

5] Examples
1 FiletoBreakald <+ = PowerMac HD
Ll tamnpie file M —
P tmmnde file M2
1 tample filp M3 _Eriuﬂniﬂ
Ll tamnpie filp &
T Sannie fip F5]
Save As: |m|
| TeachTent & SimpleText
Untitled-1.out

Finally, the output phase will begin, again shown by a progress indicator. At this
stage, a window shows the name of the file being written and the translator in
use. You can stop the process at any time by pressing the “Cancel” button.

The output progress indicator

DocAssembler 1.0

Writing "Untitled-1.o0ut"
(TeachText & SimpleText)

—————— |

Anatomy of a DocAssembler window

You can open multiple documents in DocAssembler, their number being limited

only by the available memory. Each document has a single window, arranged as a
list of records, each one of them refferring to a different source file. The fields are

structured as described below.

A DocAssembler document window

Tl iaT0D)D)D)]—————— lUntitled-1 Emg
Level Name Type Appl F T A

1 Sample file ¥1 WOEN MSWD & & @ |47
LS . Sample file ®2 WDEM MSWD e & » ||
1.2 Sample file ¥3Z WDBMN HMSWDh » & »

20 Sample file ¥4 WDEN [MSwD e » @]
1z Sample file ¥5 WDEBN HMSWDh » & @ E

The "Level" field

This field contains the index that DocAssembler automatically assignes to the
source file on the basis of its current “hierarchical” level and position in the list.
This index can be included in the output document just in front of the very first
text of each section, thus allowing you to structure the document, relying upon
DocAssembler for a correct indexing scheme.

To learn more about levels, see the "How to structure the document" section.

The "Name" field
This field shows the name of the source file.

The "Type" and "Appl" fields

This fields show the "file type" and the "file creator” of the source file. As you
probably know, these informations are used by the System to assign an icon to
each file and to open the correct application when you double click on it. Here
they are used to provide concise information about what kind of file are you
dealing with.

During the development of DocAssembler, | started by using the full creator
application name returned by the desktop database to identify the source files
(much in the same way used by the "Get Info" command of the Finder), but |
soon realized that this was wasting a great amount of screen space, so | turned to
this compact method.

The "F" field

This field shows if the source file is available, that is, if DocAssembler was able to
find it (in this case a "=" is shown) or not (in this case a "-" is shown). Of course,
when you first add a source file to a document, it is always available, but later the
file could be deleted or moved in a way that the Alias Manager is not able to
resolve.

In order to produce the output document, every source file has to be available,
otherwise you will get an error message. When this happens, you can choose
between removing its record from the list or try to restore its original position.

The "T" field

This field shows if a proper XTND translator is available for the source file. In
this case a "=" is shown, otherwise a "-" is shown.

DocAssembler lets you add any kind of file to a document, presuming that you
know what you are doing and that if a translator isn't available now, maybe it
will in the future.

Due to how the XTND System is conceived, to verify if a particular translator
matches a file, a real File System Specification record must be provided instead of
just passing a file type descriptor. So, if a real file isn't available, the XTND
System will fail to confirm its translatability, even if it should. This is why an
unavailable file will never have the "T" field set.

Anyway, when you try to produce the output document, every source file has to
have its proper translator available, otherwise you will get an error message.

The "A" field

This field shows if the application that created the source file is available. In this
case a "=" is shown, otherwise a "-" is shown. When the application is available,
a double click on the record will open it along with the source file.

Since this condition is assumed from the "file creator" information beared by the
source file, there could be situations when even if the creator application isn't
available, the file could be opened by others (for example if the file is an ordinary
'TEXT' file). In this case, if you want to be able to edit the source file from
DocAssembler, you will have to change its "file creator”. (There are many
shareware/freeware utilities that can do this).

The availability of the creator application does not interfere in any way with the
production of the output document.

When is the list updated?

The list is updated each time a source file is added or removed, or when its level
or position is changed.

Besides, the list is updated when the "Produce Document” command from the
"File" menu is issued. Finally, you can explicity request the list updating with the
"Rebuild List" command of the "Document™ menu.

How to collect the source files

DocAssembler provides three different methods for collecting the source
documents: using the standard “Open” dialog, using Drag and Drop and using
AppleScript.

Accept / reject criteria

Although these methods work quite differently, they share a common
behaviour: when you tell DocAssembler to get a new file, it tries to understand if
the file is manageable (I am sure you would not like it to accept an application or
a control panel!).

Since DocAssembler tries to overcome file format limitations, it can't simply
recognize files from a finite set of file types. So, its strategy is to accept any file
except those it can recognize as not compatible for sure, like applications, system
files, PICT files, etc.

While this kind of approach lets you collect files produced with a photo
retouching application or a three-dimensional rendering program, for which a
text import translator is not not likely to exist, it will not limit your horizons: if
you want, you can write the next major word processing application along with a
proper XTND translator and still use DocAssembler to process your files.

Don't worry about aliases: every time you add one, it will be automatically
resolved and the real file, if found, will be added instead.

The "Open dialog" method

This method uses the familiar “Open” dialog to let you select a file to add to the
current active document. To use it, select the “Add File...” command from the
“Document” menu or push the equivalent button in the toolbar and choose the
file.

The dialog for adding a source file

5 Evamples ¥ — Powerac HD

FileToBreak.rtf []
sample file #1
sample file #2 [Scrivania]
sample file #3
sample file #4
sample file #5 [_Annulla_|

o (feri)

[

I e B i O

In the usual list you will see only the files DocAssembler can accept (refer to the
"Accept / reject criteria” paragraph).

This is probably the most reassuring way to collect files, but it is also the slowest,
since it works with only one file at the time. The real reason for it is there, is to
let those users who don't have neither the Drag and Drop extension nor
AppleScript installed to use this program anyway.

The "Drag and Drop" method

DocAssembler supports the Drag and Drop extension, that comes standard with
Mac OS 7.5 and is available as an option with Mac OS 7.1.

If your system has the Drag and Drop extension installed, you will be able to
collect the source files by selecting them in the Finder and then dragging them
directly in a DocAssembler document window.

This is a much faster way to collect files compared to the "Open dialog" method,
also because you are not limited to one file at the time. If you want, you can also
drag and drop files between DocAssembler document windows.

If DocAssembler cannot accept one or more files, its action will be different
depending on its current state: if it is the current active application, it will directly
show an error message; if in the background, you will hear a "beep"” and the
application menu icon will flash until you will get DocAssembler in the
foreground, when it finally will show the error message. If you are asking why all
this complication, you should have seen it freeze my Macintosh trying to show
an alert in the middle of a drag operation!

Error message when trying to add the same file twice

At least one of the source files you tried
to add is in the document's list already.

The "Apple Script" method

Chances are that if you are a real power user, you will conclude that this is the
most powerful method. Since DocAssembler supports the required, the core and
the miscellaneous Apple Events suites and goes beyond, defining specific “Add”,
“Produce”, “Set Preference” and “Set Output” events, you can create a document,
fill it with source files and produce the output document in the format and with
the attributes you prefer entirely using AppleScript.

See the “sample script” file in this package for an example on how to do this and
turn to the "Apple Events reference" section to learn all about the events
supported by DocAssembler.

How to structure the document

Hierarchical level of the source files

Each source file you collect in a DocAssembler document is assigned a
“hierarchical” level between four different choices (0, -1, -2, -3). These levels
could be identified, from top to bottom, with *“section”, “sub-section”, “chapter”,
and “paragraph”. You can use this option to accurately structure the output
document.

When DocAssembler builds its list, it refers to the order and the level of each
source file to assign it an indexing string, such as “1.1” or “2.3.1.4”. You can then
choose to include these strings in the output document. The appealing side of
this feature is that you can apply repeated changes to both the order and the level
of the source files while DocAssembler keeps mantaining the correctness of the
indexing scheme.

When you use the “Add File...” command from the “Document” menu or the
Drag and Drop method to collect the source files, their level is initialized to the
“0” (top - section) level, while when you use an AppleScript to build your
document, you can directly specify the level of each file.

To change the hierarchical level of a source file, first select it using the mouse or
the keyboard, then choose the “Increase Level” or the “Reduce Level” commands
from the “Document” menu. (These commands have button equivalents in the
toolbar). Only one source file can be selected at once, so you cannot apply changes
to a group of files simultaneously.

When one or both these commands aren’t available, this means that the source
file’s level has reached the top or the bottom level allowed by the document
context. For example, you can never change the level of the first file in the list,
because it has to be at the topmost level; similarly, you can’t assign a level which
is more than one level deeper than the preceeding one.

How to change the source files order

Notice: this feature is available only if you have the Drag and Drop extension
installed in your system (if you work with Mac OS 7.5, you have it).

To change the position of a file in the list, first select it with the mouse or using
the arrow keys, then click again upon it and, without releasing the mouse button,
drag it to the new position. Only one source file can be selected at once, so you
cannot move a group of files simultaneously.

During this operation, a thin gray rectangle follows the mouse pointer, showing
that you have grabbed something, while a thicker one shows the position the file
would have if you released the mouse button.

If you don’t have the Drag and Drop extension, you can use an AppleScript to
build the file list, changing the script until you obtain the desired results.

If you don’t have the AppleScript extension, your only chance is to carefully
append each file in the right order using the “Add File...” command from the
“Document” menu.

Headers and footers

According to the nature of this application, informations related to headers and
footers in the source documents are not taken into account. Instead you should
use the preferences dialogs to set them up in the output document.

How to access the source files

Editing files

DocAssembler doesn't allow you to directly edit the source files, but when you
double-click on a source file in the list, the file's creator application, if available,
is automatically launched and requested to open the file.

Tracking files

DocAssembler relies on the Alias Manager to keep track of the source files. This
means that unless you do something really bad to those files, like erasing them, it
will be able to track them even if you moved or renamed them.

Setting preferences

Using the “Preferences...” command from the “Document” menu, which also
has a button equivalent in the toolbar, you can access a dialog to control several
details about the output document.

The “Preferences” dialog

Preferences

— Headers & footers

(Left Header...] [Right (Single) Header... |

[Left Footer...] [Flight (Single) Fuuter...]
—Margins Structure

Units:| centimeters w [1Double sided
[] Include indexes

Left: e Starting page #: |1

Right: 2.54

Top: [2.54 0K & Save |
Bottom: [2.54

Besides the normal "OK" and "Cancel"” buttons, there is a "OK & Save" button
that, if pressed, will record the current settings in a preferences file in the
preferences folder of your system folder. This file will then be used each time you
create a new document to initialize its preferences. To revert to the default
initialization, just delete the preferences file.

The main preferences dialog is divided in the following sections:

Margins

Here you can assign the left, right, top and bottom margin. Their values can be
specified in centimeters, millimeters, inches or points, according to the status of
the related popup menu.

Structure

If you check the “Include indexes” option, the strings showed at the left of each
source file in the document window will be included in the output document
immediately before the beginning of the source text and with the current text
attributes. Thus, if your source files starts with the section title, the result will be

that title precedeed by the index number in the same font, size, style and color.
The default setting is checked.

Check the “Double sided” option if you want a document with facing pages. The
default setting is checked. If you uncheck this option, please remember to refer to
the “Right (single) header” and the “Right (single) footer” sections for header and
footer settings.

Use the “Starting page #” field to assign the number from which to start counting
pages in the document. The default setting is 1.

Left header, Right (single) header, Left footer, Right (single) footer

These sections are perfectly analogous. Each one has a check box and a button.
Check the “Include” option if you want to include the related header or footer in
your document. The default setting is unchecked.

Use the “Edit...” button to activate a dialog to access the related header or footer
characteristics.

The “Header / Footer preferences” dialog

Right (Single) Header Preferences

[] Include in output document

— Text attributes

Font:| Helvetica -
Size: (12 points
Justification:| Left v
Color:| Black -
[]Bold [] Dutline
[] 1talic []Shadow
[] Underline []Condensed
[]Extended

— Text
This is the header text

This dialog has the following items:

= a “Font” popup menu that shows those available in your system,;

= a “Size” field for the text height in points;

= a “Justification” popup menu that allows you to choose between left,
center, right and full;

« a “Color” popup menu that lets you choose between the first eight
standard colors defined by the XTND System;

= several check boxes to control the style of the text;

= afield to input the header's or footer's text.

Known bugs and problems

XTND limitations (nice pun, huh?)

Although the Claris XTND System is based upon a real powerful concept and
deserves to be further developed, its implementation suffers from several
shortcomings.

Obviously, if one formatting feature doesn't have its counterpart into the XTND
architecture, it cannot be translated properly. This architecture is beginning to
show its age: it knows nothing about features that have become almost standard
today, like tables or borders; color management is crude at best, since all is
mapped to the 8 standard XTND colors (white, black, red, green, blue, cyan,
magenta and yellow), so you have to say goodbye to that delicate nuance that you
liked so much...

Other problems occur due to the poor quality of the translators. | did several, |
repeat SEVERAL, tests to discover that none of the translator available to me was
capable to preserve all the characteristics of the original document.

Finally, although | was using the same set of translators, with some translator
combinations | have obtained damaged files after an import-export cycle, where
ClarisWorks has never shown such a behaviour. While is likely that the Claris
development team is better than me at programming, | suspect they also have
access to better documentation about XTND.

As you probably guessed, all this problems can drastically reduce the quality of
the documents produced by this application. If you have read this far without

giving up, | believe the best strategy is to experiment with the formatting of the
original documents until a satisfying result is produced from the import-export
translator combination. By the way, don't assume that the same translator will
behave the same way both during import and export!

All that said, | know that have probably contributed with some exquisite bugs of
my own. If you think you have discovered one or more of them, please let me
know, even if you are not going to register.

Footnotes

Sorry, but | decided to skip over footnotes, because | could not figure out an easy
way to manage them using the XTND System with multiple files. | hope you
would not consider this a major flaw.

AppleScript

Currently, errors encountered during the execution of a script are not managed

properly, that is, the caller does not receive error information back. | hope to fix
this soon.

Commands reference

The apple menu

This menu contains a command to
obtain informations about the
DocAssembler application

About DocAssembler...

About DocAssembler...

Shows a window that gives informations about the author, the version number,
the name of the registered user... (If you use this program, please register!).

The File menu

New 3EN

Open 30

Close AL

5ave S

Save As... This menu contains the standard file
Revert... management commands, plus a custom

one to generate the output file.

Produce Document... 3T

Page Setup...
Print... H*P
Ouit #0
New
| B Creates a new empty DocAssembler document. This command has a
button equivalent in the toolbar and is always available.
Open...
| = Opens an existing DocAssembler document. This command has a button
equivalent in the toolbar and is always available.

Close

Closes the current active DocAssembler document. If the document's content
aren't already saved, you have a chance to do that. This command is only
available when there is at least one DocAssembler document currently opened.

Save

| = Saves the current active DocAssembler document. This command has a
button equivalent in the toolbar and is only available when you made
changes to the current DocAssembler document without saving them.

Save As...

Saves the current active DocAssembler document under a user choosen name.
This command is only available when there is at least one DocAssembler
document currently opened.

Revert...

Reloads the last saved version of the current active DocAssembler document,
discarding any unsaved changes. This command is only available when you
have made changes to the current DocAssembler document without saving
them.

Produce Document...

| Generates the output document, letting the user choose its format

between the available XTND translators. This command is available
when there is at least one entry in the current document's source file
list.

Page Setup...

Shows the standard "Page Setup" dialog relative to the current selected printer in
the chooser.
This command is always available.

Print...

|§ Shows the standard "Print" dialog relative to the current selected printer
in the chooser. This command is only available when there is at least
one DocAssembler document currently opened.

Quit

Quits DocAssembler. If you have any open document whose contents aren't
already saved, you have a chance to do that. This command is always available.

The Edit menu

| Edit I

Undo xS

Cut #H This menu contains the standard edit
Copy #C commands.

Paste F#D

Clear

Select Al 3€AH

Undo

|-b Undoes the last undoable operation. This can be a text editing operation
in a dialog or the changes applied using the "Preferences” dialog. This
command has a button equivalent in the toolbar, its availability and
name change according to the context.

Cut

| g Clears the current selection, which can be made of text or a file record,
and copies it to the clipboard. This command is only available when a
selection exists.

Copy

Copies the current selection, which can be made of text or a file record, to
the clipboard. This command is only available when a selection exists.

Paste

||E Copies the contents of the clipboard, which can be made of text or a file
record, at the current insertion point. This command is only available
when the clipboard's contents are appropriate to the context.

Clear

| ﬁ Clears the current selection, which can be made of text or a file record.
This command is only available when a selection exists.

Select All

Selects all the text in an edit field. This command is only available when there is
text to select.

The Document menu

| Document NS

Rebuild List L

Preferences...

Add File... EF

Use this menu to append or remove
Increase Level 3+ source files, to change their hierarchical
Reduce Level 3- level and to set the options related to the

output document.

Add File...

[=+[]

Activates the standard "Open" dialog to let the user choose a source file
to append to the current DocAssembler document. If the choosen file is
already in the list, a warning message is shown and the file is not
appended. This command has a button equivalent in the toolbar and is
only available when there is at least one DocAssembler document
currently opened.

Increase Level

Increases the level of the currently selected source file in the list. This
command has a button equivalent in the toolbar and is only available
when a source file whose level is increasable is selected in a
DocAssembler document.

Reduce Level

Rebuild L

v

Reduces the level of the currently selected source file in the list. This
command has a button equivalent in the toolbar and is only available
when a source file whose level is reduceable is selected in a
DocAssembler document.

ist

Checks for the existance of each file record in the list of the current
DocAssembler document and verifies if there a proper XTND translator
and the creator application are available.

This command has a button equivalent in the toolbar and is available
when there is at least one file record in the currently opened
DocAssembler document.

Preferences...

| @--] Activates a dialog to let the user choose among several options related to
- the output document. From this dialog you can:
= assign margins, choosing their units between centimeters,
millimeters, inches or points;
= choose if the document will be single or double sided;
= choose if to include automatic indexing;
= assign the starting page number;
< choose if to include headers and/or footers and assign their text
and attributes;
This command is only available when there is at least one
DocAssembler document currently opened.

The Window menu

Zoom Window 3/ Use this menu to choose the active

] DocAssembler document or to change
Untitled-1 the zoom state of its window.
v Untitled-2

Zoom Window

Changes the zoom state of the current DocAssembler document window and is
equivalent to click in the zoom box of the window. This command is only
available when there is at least one DocAssembler document currently opened.

Apple Events reference

This section describes the Apple Event support in DocAssembler. It will explain
each Apple Event which can be sent to the application. Description for the
required suite is omitted, you can assume the standard behaviour.

The Standard Suite

Close
Closes an object.

Event Classs kCoreEventClass
Event ID: kAEClose

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the objectsto close
Required / Optional: required

Additional Parameters:
saving -- specifies whether or not changes should be saved before closing
Descriptor Keyword: keyAESaveOptions

Descriptor Type: typeEnumeration
Required / Optiona: optional

in -- the file in which to save the object

Descriptor Keyword: keyAEFile
Descriptor Type: typeAlias
Required / Optiona: optiona

Reply Parameters:

«none»

AppleScript example:

tell application "DocAssembler 1.0" to close document "sample™

tell application "DocAssembler 1.0" to close window "sample™
tell application "DocAssembler 1.0" to close document saving yes in "sample"

Data Size
Returns the size in bytes of an object.

Event Classs kAECoreSuite
Event ID: kAEGetDataSi ze

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the object whose data size isto be returned
Required / Optional: required

Reply Parameters:

Descriptor Type: typel nteger -- the size of the object in bytes

AppleScript example:

tell application "DocAssembler 1.0" to get data size of document "sample™

Get
Gets the data for an object.

Event Class:. kAECoreSuite
Event ID: kKAEGetData

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the object whose datais to be returned
Required / Optional: required

Reply Parameters:

Descriptor Type: typeWildCard -- the data from the object

AppleScript example:

tell application "DocAssembler 1.0" to get document "sample™

Make
Makes a new element.

Event Classs kAECoreSuite
Event ID: kAECreateElement

keyDirectObject:

Descriptor Type: typeNull
Required / Optiona: optiona

Additional Parameters:

new -- the class of the new element
Descriptor Keyword: keyAEObjectClass
Descriptor Type: typeType

Required / Optional: required

at -- the location at which to insert the element
Descriptor Keyword: keyAElInsertHere

Descriptor Type: typelnsertionLoc

Required / Optiona: optiona

with data -- the initial data for the element
Descriptor Keyword: keyAEData

Descriptor Type: typeWildCard

Required / Optiona: optional

with properties -- the initial values for the properties of the element
Descriptor Keyword: keyAEPropData

Descriptor Type: typeAERecord

Required / Optiona: optional

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0" to make new document "sample"
tell application "DocAssembler 1.0" to make new window "sample" at {50, 50}

Open
Opens the specified document.

Event Class:. kCoreEventClass
Event ID: kAEOpenDocument

keyDirectObject:

Descriptor Type: typeAEList -- can be alist of alias records or an object specifier
Required / Optional: required.

Reply Parameters:

«none»

AppleScript example:

tell application "DocAssembler 1.0" to open document "sample”

tell application "DocAssembler 1.0" to open window "sample™
tell application "DocAssembler 1.0" to open document {'sample.1", "sample.2"}

Print
Prints the specified document.

Event Class:. kCoreEventClass
Event ID: kAEPrintDocument

keyDirectObject:

Descriptor Type: typeAEList -- can be alist of alias records or an object specifier
Required / Optional: required.

Reply Parameters:

«none»

AppleScript example:
tell application "DocAssembler 1.0" to print document "sample™

tell application "DocAssembler 1.0" to print window "sample"
tell application "DocAssembler 1.0" to print document {"sample.1", "sample.2"}

Save
Saves a document.

Event Class:. kAECoreSuite
Event ID: kAESave

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the objectsto save
Required / Optional: required

Additional Parameters:

In -- the file in which to save the object(s)
Descriptor Keyword: keyAEFile

Descriptor Type: typeAlias

Required / Optional: required

as -- the file type of the document in which to save the data
Descriptor Keyword: keyAEFileType

Descriptor Type: typeType

Required / Optiona: optiona

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0" to save document "sample”
tell application "DocAssembler 1.0" to save document in "sample.2"

Set
Sets an object’s data.

Event Classs kAECoreSuite
Event ID: kAESatData

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the object to change
Required / Optiona: required

Additional Parameters:

to -- the new value
Descriptor Keyword: keyAEData
Descriptor Type: typeWildCard

Required / Optional: required

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0" to set document title to "sample”

The "Odds" Suite

Select
Selects the specified object.

Event Classs 'Odds'
Event ID: kAESdect

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the object to select
Required / Optiona: required.

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0" to select document "sample™
tell application "DocAssembler 1.0" to select window "'sample”

The Miscellaneous Standards Suite

Revert
Reverts a document to the most recently saved version.

Event Classs kAEMiscStandards
Event ID: kAERevert

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the object to revert
Required / Optiona: required

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0" to revert document "sample"

The DocAssembler Suite

Add
Adds a source file to a DocAssembler document.

Event Classs. kAE DA_Suite
Event ID: kKAE_DA_AppendFile

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the document to add thefileto
Required / Optiona: required

Additional Parameters:
the -- specifies the file to add
Descriptor Keyword: keyAEFile

Descriptor Type: typeAlias
Required / Optional: required

with level -- the hierarchical level for the file

Descriptor Keyword: keyAEL evel
Descriptor Type: typeShortlnteger
Required / Optional: required

Reply Parameters:

«none»

AppleScript example:

tell application "DocAssembler 1.0"

tell document "sample" to add the file "source" with level -1
end tell

Produce
Produces output from a DocAssembler document.

Event Class. kAE DA_Suite
Event ID: kAE_DA_ProduceFile

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the document to produce the file
Required / Optional: required

Additional Parameters:

the -- specifies the file to produce

Descriptor Keyword: keyAEFile
Descriptor Type: typeAlias

Required / Optional: required

using translator -- the translator to use

Descriptor Keyword: keyAE DA _TransName
Descriptor Type: typeChar
Required / Optional: required

with format -- the requested format

Descriptor Keyword: keyAEFileType
Descriptor Type: typeType
Required / Optiona: required

Reply Parameters:
«none»
AppleScript example:
tell application "DocAssembler 1.0"
tell document "sample" to produce the file "sample.out" using translator "RTF" with

format "TEXT"
end tell

Set Preference
Chooses options for a DocAssembler document.

Event Class:. kAE DA_Suite
Event ID: KAE DA _SetPrefs

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the document whose preferences are being set
Required / Optiona: required

Additional Parameters:
units to -- choose margin units between cm, mm, inches and points
Descriptor Keyword: 'PRO1'

Descriptor Type: typeEnumeration
Required / Optiona: optiona

left margin to -- the left margin in the preferred units

Descriptor Keyword: '‘PR02'
Descriptor Type: typeSM F oat
Required / Optiona: optional

right margin to -- the right margin in the preferred units

Descriptor Keyword: '‘PR0O3'
Descriptor Type: typeSMF oat
Required / Optiona: optiona

top margin to -- the top margin in the preferred units

Descriptor Keyword: '‘PR04'
Descriptor Type: typeSM F oat
Required / Optiona: optional

bottom margin to -- the bottom margin in the preferred units

Descriptor Keyword: '‘PRO5'
Descriptor Type: typeSMF oat
Required / Optiona: optiona

double sided -- to have facing pages

Descriptor Keyword: 'PRO6'
Descriptor Type: typeBoolean
Required / Optiona: optiona

include indexes -- to include auto-generated indexes

Descriptor Keyword: '‘PRO7"
Descriptor Type: typeBoolean
Required / Optiona: optional

starting page to -- the starting page number

Descriptor Keyword: '‘PR08'
Descriptor Type: typeShortlnteger
Required / Optiona: optiona

Reply Parameters:
«none»
AppleScript example:

tell application "DocAssembler 1.0"
tell document "sample" to set preference units to inches
tell document "sample" to set preference left margin to 1.5
tell document “sample" to set preference right margin to 1.5
tell document “sample" to set preference top margin to 2.0
tell document "sample" to set preference bottom margin to 2.0
tell document "sample" to set preference with double sided
tell document "sample" to set preference with include indexes
tell document “sample" to set preference starting page to 3
end tell

Set Output
Sets the preferences for headers or footers.

Event Class:. kAE DA_Suite
Event ID: kKAE_DA_SetOutputOption

keyDirectObject:

Descriptor Type: cObjectSpecifier -- the document whose headers or footers are being set

Required / Optional: required

Additional Parameters:
option -- option code (identifies header or footer)
Descriptor Keyword: 'OplD’

Descriptor Type: typeEnumeration
Required / Optional: required

include --include this header or footer

Descriptor Keyword: keyAE_DA_HFInclusion
Descriptor Type: typeBoolean
Required / Optiona: optiona

font to -- the name of the font

Descriptor Keyword: keyAE_ DA _HFFont
Descriptor Type: typeChar
Required / Optiona: optiona

size to -- the size of the text in points

Descriptor Keyword: keyAE DA _HFSize
Descriptor Type: typeShortlnteger
Required / Optiona: optional

style to -- the text style attribute

Descriptor Keyword: keyAE DA _HFStyle
Descriptor Type: typeEnumeration
Required / Optiona: optiona

justification to -- the text justification

Descriptor Keyword: keyAE DA_HFJust
Descriptor Type: typeEnumeration
Required / Optiona: optiona

color to -- the text color

Descriptor Keyword: keyAE_DA_HFColor
Descriptor Type: typeEnumeration
Required / Optiona: optional

text to -- the text

Descriptor Keyword: keyAE DA _HFText
Descriptor Type: typeChar
Required / Optiona: optiona

Reply Parameters:

«none»

AppleScript example:

tell application "DocAssembler 1.0"

tell document "sample" to set output option left header with include

tell document "sample" to set output option left header font to "Courier"

tell document "sample" to set output option left header size to 14

tell document "sample" to set output option left header style to underline

tell document "sample" to set output option left header justification to center

tell document "sample" to set output option left header color to blue

tell document "sample" to set output option left header text to "Here goes the text
end tell

Constants and AppleScript enumeration terminology

kAE_DA Suite = ' FRob'
kAE_DA AppendFil e = ' AddF
kAE DA ProduceFile = ' Prod'
KAE DA SetPrefs = 'Pref’
KAE DA SetQutputOption = 'POUT
keyAE_DA TransNane = "'Tran'
keyAE_DA Optionl D = 'OplD
keyAE DA Units = ' PRO1"
keyAE_DA Left Margin = ' PRO2
keyAE_DA Ri ght Margi n = ' PRO3'
keyAE_DA TopMar gi n = ' PR0O4'
keyAE_ DA BottomVargin = ' PRO5'
keyAE_DA Doubl eSi ded = ' PRO6'
keyAE DA | ncl udel ndexes = ' PRO7'
keyAE DA StartingPage = ' PRO8'
keyAE_DA HFI ncl usi on = ' HFO1'
keyAE DA HFFont = ' HF02'
keyAE_DA HFSi ze = ' HFO3'
keyAE_DA HFStyl e = ' HFO4'
keyAE DA HFJust = ' HFO5'
keyAE_DA HFCol or = ' HFO6'
keyAE DA HFText = ' HFOT7"

uni C e« centimeters
uni M« millimeters
uni I ¢ inches
uni P« points

enumCent i meters
enumM I i meters
enum nches
enunmPoi nt s

enunieft Header 'LeHe' < left header
enunRi ght Header '"Ri He' < right header
enunieft Foot er LeFo' « left footer
enunRi ght Foot er '"Ri Fo' < right footer

enuntt yl ePl ai n
enunst yl eBol d
enunttyleltalic
enuntt yl eUnder | i ne
enunttyl eQut !l i ne
enuntt yl eShadow
enuntt yl eCondense
enuntt yl eExt end

pl an' < plain
bold' « bold
ital' e« italic
undl ' < underline
outl' « outline
shad' < shadow
cond' e« condense
exte' e« extend

enumjJust Lef t
enumjust Cent er
enumjust Ri ght
enumjust Ful

enuntCol or Wi te
enuntCol or Bl ack
enuntCol or Red
enuntCol or G een
enuntCol or Bl ue
enuntol or Cyan
enunCol or Magent a
enuntol or Yel | ow

juslL'
jusC
j usk
j usF'

col W
col N
col R
col G
col B'
col C
col M
col Y

left
center
right
full

white
black
red
green
blue
cyan
magenta
yellow

Version history

1.0 (March 1996)

First public release.

